
  

                                                                                       Khusid Mykhaylo,              
                                                                                              pensioner,
                                                                                              citizen of Ukraine,
                                                                                             (Independent Researcher 
                                                                                             Wetzlar  Germany.)
                                                                                          E-mail: michusid@meta.ua

                                                                                       
                                                                              

                                Algebraic solution of Fermat's theorem
                                      (mathematics, number theory)

 Abstract: Fermat's Last Theorem (or Fermat's last theorem) is one of

the most popular theorems in mathematics. Formulated in French

  mathematician Pierre Fermat in 1637. Despite the simplicity of the formulation,

  literally, at the “school” arithmetic level, proof of the theorem

sought by many mathematicians for more than three hundred years. And only in 1994

year the theorem was proven by the English mathematician Andrew Wilson with

colleagues; The proof was published in 1995. [1]-[5]

   The author of this article has been searching for his own for a long time.

   accessible algebraic solution to this problem and believes that he succeeded,

   which he presents in this article.
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   Introduction.
                                                       
 X n + Y n = Z n

  (01)

 where:
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 n- prime number, n>2; X,Y,Z are integers.

    The solutions of which can be X, Y, Z - relatively prime numbers.

  1.Decomposition of (01) into multipliers.
                      
  If n is odd, then (01) will decompose into multipliers:

  X n + Y n= ( X + Y )( X n−1 − X n−2 Y + ... −XY n−2+ Y n−1)           (02)

 where in the second bracket is the geometric progression
                      

  first term a1 = X n−1

   ,and a multiplier 
q=−

Y
X

                                 

  The sum of the members of which 
S =

a1(1 − qn
)

1 −q

        

   Zn
=Z11 Z 22                                            (03)

  where:
  
   Z11 = X + Y                                                               (04)

  Z22 = X n−1
− X n−2Y + ... −X Y n−1

+Y n−1

              (05)
                  
 2.Equivalent representation Z22 .

 If we sum the equidistant terms from the middle term of the progression Z22  in pairs.

  of the middle term of the progression in pairs we have:

 for degree 3

  Z22=( X +Y )
2
−3XY                     (06)

  Fifth degree :

      
Z22 =

X 5 + Y 5

X + Y
= X 4 −X 3 Y +X 2 Y 2 −X Y 3 + Y 4

                    (07)

  X 4
+ Y 4

= ( X + Y )
4
− 4 X Y ( X + Y )

2
+ 2 X 2 Y 2

                         (08)

     −X Y 3
− X 3 Y =−X Y ( X 2

+ Y 2
)=−X Y ( X + Y )

2
+2 X 2 Y 2

     (09)



        Z225 = ( X + Y )
4
− 5( X + Y )

2
+ 5 X 2 Y 2

                                         `(10)

   to the 7th degree:

         Z227 = ( X + Y )
6
− 7 X Y ( X + Y )

4
+ 14 X 2 Y 2

( X + Y )
2
− 7 X 3 Y 3

    (11)

   degree n:

    
Z22N =

X n
+ Y n

X + Y =

  =   ( X + Y )
n−1

− Kn−3 XY ( X +Y )
n−3

+...∓K2 X
n−3

2 Y
n−3

2 (X +Y )
2
±nX

n−1
2 Y

n−1
2

  (12)

  Z22N = ( X + Y )
n−1

− Kn−3 XY ( X +Y )
n−3

+...∓K2 X
n−3

2 Y
n−3

2 (X +Y )
2
±nX

n−1
2 Y

n−1
2

     (*)

 where  K n−3 ...K 2    corresponding coefficients at  ( XY )
...
( X +Y )

...

equivalent representation Z22N    algebraic sum of even powers of

 X+Y and the residual term  ±n X
n−1

2 Y
n−1

2
.

       Lemma1: Suppose that for an n odd number and for the previous n-2

  an equivalent representation(*) is valid, then for the next n+2 it is

  (*) is valid.

 We show the transition from the two previous odd degrees to the next one

   further:

   Zn
n
=X n

+Y n

                                                                 (14a)

   ( X n−2
+Y n−2

)( X 2
+Y 2

)=X n
+Y n

+Y 2 X n−2
+Y 2 Y n−2

       (14b)

   Zn
n
=X n

+Y n

= ( X n−2
+Y n−2

)( X 2
+Y 2

)−X 2 Y 2
( X n−4

+Y n−4
)   (14c)

  details:

 

X n1 + Y n1

X + Y    multiply by          ( X + Y )
2
− 2 X Y

               



   X n+2
+Y n+2

=(X +Y )[Z 22N( X +Y )
2
−2XYZ22N−X 2 Y 2

( X n−2
+Y n−2

)]                (14)

  ( X + Y )n−1 − Kn−3 XY ( X +Y )n−3+...∓K2 X
n−3

2 Y
n−3

2 (X +Y )2±nX
n−1

2 Y
n−1

2

 *
   

 *  ( X +Y )2 = ( X +Y )n+1−Kn−1(01) XY ( X +Y )n−1+...∓K 4(01) X
n−3

2 Y
n−3

2 ±nX
n−1

2 Y
n−1

2 ( X +Y )2

  
(15)

 

  −2 XY [  ( X + Y )
n−1

− Kn−3 XY ( X +Y )
n−3

+...∓K2 X
n−3

2 Y
n−3

2 (X +Y )
2
±nX

n−1
2 Y

n−1
2

 ] =

 =

−2 XY ( X +Y )n−1−K n−3 (02)2 X 2 Y 2( X +Y )n−3+...∓K2 (02)2 X
n−1

2 Y
n−1

2 ( X +Y )2±2 X
n+1

2 Y
n+1

2

 n  

                                                                                                                                       
(16)                         

  −X 2 Y 2( X +Y )n−3+K n−3(03) X 3 Y 3( X +Y )n−5+...±K 2(03) X
n−1

2 Y
n−1

2 ( X+Y )2 ∓(n−2) X
n+1

2 Y
n+1

2

                                                                                                                                                          
(17)
 where K ...(01) - corresponding coefficients when multiplied by ( X +Y )

2

 ,

          K ...(02) - corresponding coefficients when multiplied by −2XY ,

           K ...(03) -corresponding coefficients when multiplied by  −X 2 Y 2

            After adding these algebraic terms we again obtain(*)
  

                                                            Theorem1.

 The equivalent representation (*) is valid for any prime n.

By lemma , if the two previous representations of (*)are valid,

 of degree 3 and 5, then it is valid for degree 7. Now 

 taking the previous 5 and 7 degrees we have its validity for the 9th degree, etc,

which means all odd degrees are described by the above formula.

And since it includes prime n , it is valid for prime n. 

 Let us represent (1) as:



 
( X +Y )

n
− Zn

=nX n−1 Y +
n (n−1)

2
X n−2 Y 2

+...+
n(n−1)

2
Y n−2 X 2

+n X Y n−1

( X +Y−Z )[( X +Y−Z )n−1−nk n−3 ( X +Y ) Z ( X +Y −Z )n−3±nk 2( X +Y )n−3 Z n−3( X +Y−Z )2∓n( XY )
n−1

2 ]

=
nX n−1 Y +

n (n−1)

2
X n−2 Y 2

+...+
n(n−1)

2
Y n−2 X 2

+n X Y n−1

                          (18)

   it follows:

Z22 =( X +Y )
n−1

−nXY (...)                                  (19)

  What indicates the presence of n inX+Y – Z .
.
 And let's separate the common multiplier n:

 Z22n =( X + Y )
n−1

−nk n−3 X Y ( X + Y )
n−3

+...±nk2 X
n−3

2 Y
n−3

2 ( X +Y )
2
∓n X

n−1
2 Y

n−1
2

   (20)

 3.Analysis of Equation (20).

 From equation (20)  Z11=X +Y  and  Z22  cannot have a common factor for

  except for n. From which the following equalities follow in the absence of n:

  X +Y=Z 1
n

   ,         Z−X =Y 1
n

     ,           Z−Y=X 1
n

                                      (21)

   Z11=Z 1
n

 , Z22=Z 2
n

 , X 11=X 1
n

 , X 22=X 2
n

 , Y 11=Y 1
n

  , Y 22=Y 2
n

             (22)

                X +Y−Z=n X 1 Y 1 Z1 K o                                   (23)

        where  

 K o -an integer coprime to the others specified

   except n.

              Z1
n
=X 1

n
+Y 1

n
+2 n X 1 Y 1 Z1 K o                                    (24) 

   X−Y =X 1
n
−Y 1

n

                                                                        (25) 

   Z1
n
−Z=n X 1 Y 1 Z 1 K o                                                (26)   



   Z2=Z 1
n−1

−n X 1 Y 1 Ko                                            (27)

    X−X 1
n
=n X 1 Y 1 Z 1 Ko                                                      (28)

   X 2=X 1
n−1

+n Z 1 Y 1 Ko                                              (29)

     Y−Y 1
n
=n X 1 Y 1 Z 1 Ko                                                    (30) 

       Y 2=Y 1
n−1

+n Z 1 X 1 Ko                                                (31)                                            

  2 X =Z1
n
−Y 1

n
+X 1

n

                                                                        (32)     

   2 Y =Z1
n
−X 1

n
+Y 1

n

                                                                          (33)     

    2 Z=Z1
n
+X 1

n
+Y 1

n

                                                                  (34)                                       
 

                Z1
n
−X 1

n
−Y 1

n
=2 n X 1 Y 1 Z1 K o                                (35)

                 Z1
n
−[( X 1+Y 1)

n
−n X 1

n−1 Y 1 −...−n Y 1
n−1 X 1 ] = 2 n X 1 Y 1 Z1 K o           (36)

                 Z1−X 1−Y 1=nK n  from which it follows      Z1>n                        (37)

    Note X, Y, Z are coprime numbers, as well as X 1, X 2, Y 1, Y 2, Z 1, Z 2  .

  If the sum or difference of two coprime numbers has a factor n, then

  the sum and difference of the n-power of these numbers is divisible by at least n2
,

 which is obvious from (20), (04).

   If in the expansion Z, X, Y has a prime factor n

    Z22=nZ 2
n

   ,   X 22=nX 2
n

  ,  Y 22=nY 2
n

                                                                (38)

    and according to formula (20) Z2  cannot have n available, otherwise

   this will lead to the presence of it in X or Y, and vice versa, which is not acceptable.

  Z2 , X 2 , Y 2 - does not contain the factor n. In this regard, if Z contains a factor n, 
then

   formula (26) has the form, since sum  X 1
n
+Y 1

n

 contains a multiplier  nm
 where



natural number, m≥2  and 

 Z2 , X 2 , Y 2 -   does not contain the factor n.

  nnm−1 Z 1
n
=X 1

n
+Y 1

n
+2nm X 1 Y 1 Z1 K o                                   (39)

To solve (34) in integers, degree n in X 1
n
+Y 1

n

 ,should be equal

degree n in the last monomial, that is, minimally n2
.

  
similar:
                                     

   nnm−1 X 1
n
=Z1

n
−Y 1

n
−2 nm X 1 Y 1 Z 1 K                   (40)

     nnm−1 Y 1
n
=Z1

n
−X 1

n
−2 nm X 1 Y 1 Z 1 K                 (41)

   nnm−1 Z 1
n
−nm Z 1 Z 2 =nm X 1 Y 1 Z 1 K   ,   Z=nm Z 1 Z 2     (42)

   nm X 1 X 2−nnm−1 X 1
n
=nm X 1 Y 1 Z 1 K   ,       X =nm X 1 X 2    (43)

    nm Y 1 Y 2−nnm−1 Y 1
n
=nm X 1 Y 1 Z 1 K   ,        Y =nm Y 1 Y 2    (44)

  What follows:
  

     Z2=nnm−m−1 Z 1
n−1

−X 1 Y 1 K           (45)                       

   X 2=nnm−m−1 X 1
n−1

+Z 1 Y 1 K           (46)

   Y 2=nnm−m−1 Y 1
n−1

+Z 1 X 1 K           (47)

 If there is n in Z, we assign it to some Ź1=nn Z1
n

.

  Thus

   X +Y−Z=n X 1 Y 1 Z1 K o   universal,

   where X 1, Y 1 Z 1, Ko -coprime corresponds to X,Y,Z with and without n. The difference

 is

   K o=nm−1 K     (48)

4.Degree n=3.



   According to (28) and Newton’s binomial[6]:

              Z2
3

=  Z1
6
−3( X 1

3
+3 X 1 Y 1 Z 1 Ko)(Y 1

3
+3 X 1 Y 1 Z1 K o)=(Z1

2
−3 X 1 Y 1 K o)

3

=

   = Z1
6
−9 Z 1

4 X 1 Y 1 K o+27 Z 1
2 X 1

2 Y 1
2 K o

2
−27 X 1

3 Y 1
3 K o

3

             (49)

  On the other side :

   Z2
3
=( X +Y )

2
−3 X Y =

  =  Z1
6
−3 X 1

3 Y 1
3
−9 X 1

3 X 1 Y 1 Z1 K o−9 Y 1
3 X 1 Y 1 Z 1 K o−27 X 1

2 Y 1
2 Z 1

2 K o
2

  (50)
                              ---------------------------------------  
  Underlined in (50) according to (35):

  −3( X 1
3
+Y 1

3
−Z1

3
+Z 1

3
)3 X 1 Y 1 Z1 K o = 2∗27 X 1

2 Y 1
2 Z1

2 K o
2

- 9 X 1 Y 1 Z 1
4 K o (51)

        9K o
3
=1 ,   

K o
3
=

1
9         (52)

    There is no solution in whole numbers.

 If Z contains n:

    X +Y = 33m−1 Z 1
3

          (53)

   3 Z 2
3

= 3(33m−1 Z1
2
−3m X 1 Y 1 K o)

3

= 39m−2 Z1
6
−36m+1 Z1

4 X 1 Y 1 Ko +

 + 35m+1 Z1
2 X 1

2 Y 1
2 K o

2

- 33m+1 X 1
3 Y 1

3 Ko
3

     (54)

  ( X +Y )
2
−3 X Y = 36m−2 Z1

6
−3 X Y      (55)

   (54)=(55),when divided by 32
there is no solution in integers.

      
             5.n – prime number.

        According to paragraph 3, the sum of two integers X,Y to an prime power n 

  equal to the third number Z to the power n only when  performed   necessary 

 condition, namely (21):

                              X +Y=Z 1
n

                        (56)



                                 Z−X =Y 1
n

                        (57)

                                   Z−Y= X 1
n

                     (58)
 
 and if one of these conditions is not met, there is no solution in integers

    Fermat's theorem in integers, so there is no need to consider

    the case of n being in one of three numbers.

   Let be:

   X 3
3
+Y 3

3
=Z 3

3

          (59)

 where

 Z3 -integer.

 where

  X 3+Y 3 not integers, but irrational, since Fermat’s theorem in the third

powers are not solvable in integers.

   Let's say :

   X n+Y n=Zn
   (60)

   X +Y=Z 1
n

   (61)

     Multiply (59) by Zn−3
  and we will equate      Z3=Z :

    Z1
n Z 2

n
=Z n−3

( X 3
3
+Y 3

3
) (62)

  But then:

  

X 3
3
+Y 3

3

Z1
3 =

Z3

Z1
3

= Z2
3

  (63)

 which means that the third power of Fermat's theorem has an integer solution,

 and if there is a solution (01), then to the 3rd degree it is obligatory.

 Thus, assumption (60) is incorrect and further- inequality (61)!



  6. Conclusion.

If the degree in (01) is odd, there is no solution. Pharm proved the absence of a 

solution  for the 4th degree and thereby proved its absence for everyone  n=2m
,

 where m is an integer. Fermat's theorem is solvable in the first and second powers!
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